
N90-22296
RESOURCE ALLOCATION PLANNING HELPER (RALPH):

LESSONS LEARNED

Ralph Durham, Norman B. Reilly, Joe B. Springer
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, California

(818) 354-6316
FTS 792-6316

FAX (818) 393-4100

ABSTRACT

The Jet Propulsion Laboratory's
(JPL) Resource Allocation Process

incorporated the decision making software
system RALPH into the planning process
four years ago. The current principal task of
the Resource Allocation Process includes the

planning and apportionment of JPL's

Ground Data System composed of the Deep

Space Network and Mission Control and
Computing Center facilities. The addition

of the data-driven, rule-based planning
system, RALPH, has expanded the planning

horizon from eight weeks to ten years and
has resulted in significant labor savings.

Use of the system has also resulted in
important improvements in science return

through enhanced resource utilization. In
addition, RALPH has been instrumental in

supporting rapM turn around for an
increased volume of special "what if"
studies.

This paper briefly reviews the status

of RALPH and focuses on important
lessons learned from the creation of an

highly functional design team, through an
evolutionary design and implementation

period in which we selected, prototyped and
ultimately abandoned an 'AI' shell, and

through the fundamental changes to the very
process that spawned the tool kit. Principal

topics include proper integration of software
tools within the planning environment,

transition from prototype to delivered

software, changes in the planning

methodology as a result of evolving software
capabilities and creation of the ability to

develop and process generic requirements to
allow planning flexibility.

Also examined are strengthening of
resource allocation techniques enabling

implementation of effective conflict
resolution strategies through an

understanding of mission flexibility in the
context of resource capacity/availability,
characteristics and constraints, and

techniques enabling early forecasting of
resource loading to permit mission design

changes. Finally, we present a discussion of
a design which provides the ability to easily
alter resource and requirements data tree

structures to provide a problem-independent

scheduling system applicable to a wide range
of scheduling problems.

INTRODUCTION

During the last four years, the
Resource Allocation Planning Helper

(RALPH) has become an integral part of

the Ground Data System Resource
Allocation Process (RAP) at the Jet

Propulsion Laboratory. (see Figure 1) As
a result of the experience of users from

the flight projects, the Resource Analysis
Team and ground-based radio astronomy,

both the process and the RALPH tool kit
have begun to change and mature. 1 The

experiences gained during this period of

transition have provided some interesting

17

0 • • • • • • 0 0 •

18

0 • • • 0 • • 0 • •

19

insights of benefit to those involved in the

creation of similar systems.

RALPH has enabled the JPL

Resource Analysis Team to extend its

planning horizon from the three weeks
common in the mid-1980s to ten years. In

doing so, it provides a valuable planning

tool for ground-based radio astronomy,

mission and sequence designers of current

unmanned deep space and planetary

projects, and planners of future projects.

Providing the ability to quickly derive

answers to 'what-if' questions posed by

JPL and NASA management, RALPH has

proven to be a unique and worthwhile
resource.

This paper presents a discussion of
the transitions that have occurred during

an evolutionary design and

implementation cycle.

COHESIVE DESIGN TEAM

From the inception of the project

in 1985, a relatively small group of

developers and users have worked

cooperatively toward an illusive goal.

Though from different organizations

within the JPL matrix, developers and

users have built a working relationship

based on constant personal
communication. To the team, this has

meant that formal weekly design meetings

are reinforced by daily informal sharing of

progress, frustrations, an ever-expanding

user wish list, triumphs and failures.

Through the first three years of

design and prototyping, purely through an

accident of logistics, the teams inhabited

the same building, separated only by a

flight of stairs. This providential co-

location was of tremendous importance to

the ultimate success of the project. The

development team participated in the

'hands-on' production of planning products

during this period, and through these
efforts were able to both confirm what

they knew and to identify what they did

not yet understand.

'LIVE-IN' KNOWLEDGE

ENGINEERING

A fortuitous decision in the early

stages of RALPH design was that to build

a true expert system. As will be explained
later, that decision was altered in stages as

the design matured, but the effort by

development to understand the Planning

Methodology was already underway.

Planning is not scheduling; though

the end result may well be a schedule, it

requires a unique mind-set that does not
come easily to some. A plan may be

differentiated from a schedule by the

process of its creation. Typically, a

planner has much more to consider than

simply how to fit some irregular pieces

together to force them into a confined

space. Rather, he must juggle the

complexities of intertwined impacts that

his decisions may have on the entities

being scheduled. A prime example is that

Resource Allocation Team plans

(schedules) have as their principal aims:

(1) the maximizing of science return from

each of the spacecraft being tracked, (2)

optimization of resource use, and (3)

spacecraft health/survival.

The need to understand the

planning mind-set became apparent during
the earliest stages of the Design Team's

work, and, as a result, the developers

virtually 'moved in' with the users. Due

to the close proximity of our offices,

members of the development team had

begun to spend virtually all of their time
working with the planners. Though much

of their activity was typical of the

information gathering stages of Knowledge

Engineering, their involvement with the

2O

Resource Allocation Team was total. At

least two developers have acquired the

skills of apprentice planners.

The result of this extended task has

been a design that is intuitive, generic and
flexible. RALPH is optimized to attack

some very specific problems revolving

around identification and management of

resource conflicts at Deep Space Network

(DSN) stations, but has already shown its

ability to solve problems not specifically

foreseen by the Design Team. As they

acquired the planning mind-set, the

development team began to realize that

the solution to the primary problem, if

properly implemented, could be applied

readily to other resource scheduling
situations.

One of the most commonly applied

results is the capability to do 'what if'

special studies for a variety of users. To
date, those activities have included an

analysis of the potential impact of NASA

access to a proposed Centre National

d'Etudes Spatiales (CNES) 34 meter

tracking station on Tahiti, an impact study

on proposed DSN support for Phobos and

a DSN study to examine the cost-

effectiveness of acquiring some additional
hardware to minimize station downtime

during equipment upgrades. The Phobos

study was of some interest because, as a

result of its findings, Phobos Project

management altered the landing date of

Lander #2 and adopted a co-location
scenario for the landers. The addition of

RALPH support has enabled the team to

produce one or two special studies each

month as a complement to the regular
work load.

Each of these, and other studies,

have been possible because the design

offers nearly unlimited flexibility that

allows the planner to describe virtually

any set of resource capabilities and user

requirements.

A LITI'LE LANGUAGE FOR DATA

TREE MANIPULATION

Prototyping the necessary

Requirements and Resources data

management techniques had proven the

value of specialized tree structures to the

development team. It became apparent,

though, that without resorting to the use

of proprietary software with some

unacceptable limits, manipulation of data

objects required a great deal of coding.

The decision to create a little language to

manage operations within the RALPH

database has proven to have been the

correct path.

Implemented in C, the resulting

Tree Manipulation Base Routines

(TMBR) has provided sufficient power

and flexibility that approximately half of
the RALPH executables are written in

TMBR. The remaining code is C.

The tree structures are central to

the final RALPH design. Schedules are

appended to the lowest levels of the

Resource Capabilities trees as they are

created. The text and graphics editors,

printer and plotter routines and display
drivers all access schedules and user

requirements via TMBR commands.

Schedule changes following negotiating
sessions alter the data structures via

TMBR.

CART BEFORE HORSE

When the Resource Allocation

Team first identified the need for software

support, it seemed apparent that the
conditions necessitated a schedule

optimizer. The planning staff had spent

years putting together schedules manually,

but the capability to create a final product

that provided the maximum possible

support for all users while minimizing

negative impacts was very time-consuming.

21

The inability to identify and evaluate all
alternatives had precluded true planning

beyond three to eight weeks. Even within
this time frame it was difficult, if not

impossible, to react in real time to

changes in user requirements (science

opportunities such as unexpected solar

activity or the recent super nova) and

facility capabilities (last winter's

inopportune loss of the 70m station at

Madrid during a period of already heavy

contention).

As design work was begun, it

became apparent to the team that

concentrating on the optimizer would be
a tactical error. The resource allocation

process would be better served by a tool
that could build the schedule from scratch.

Optimization, though guided by the

planners, had always been a people

process, decision making by consensus of

representatives of all involved projects.

Totally removing the users from the loop

would be politically inadvisable.

With the realization that the

planner logically had to be done first, the

team once more began looking at

required functionality. Focus was initially

on implementing what we had learned

about the planning process, but once

again, it was realized that we had not

reached the-illusive 'square one'. Our

planners work was being driven by written

requirements levied by users. The

planning software would require some sort

of interface through which requirements

could be input.

The requirements translator, which

interprets and reformats user inputs,

revealed itself to be a task of a complexity

equal to that of the planner. The

translator must accept widely varied input

in the form of user requirements and

synthesize a uniform list of times,

durations, antenna designations and split

coverage with tracks to support uplink and

downlink for distant spacecraft that the

planner can overlay on a timeline.

Parsing the input file and creating a

common format from requirements which

may be totally generic (14 hours of

tracking on 34m stations during the next

seven days), science priority specific,

spacecraft or mission event-driven, or
innumerable combinations is more time

and resource consuming than creating a

plan. (see Figure 2)

Another pivotal innovation that has

made the system such a valuable tool was

the concept of Generic Requirements.

Building a schedule is a series of

controlled, rule-based reactions to

requirements imposed by the participants.

Each scheduling exercise calls for
thousands of individual decisions and has

thousands of potential solutions. As in a

game, the complexity increases

geometrically with the number of rules. If

projects could be convinced that there

were advantages to loosening or

reformatting their tracking requirements,

or reducing the number of rules in the

game, the planner, whether man or

machine, would have many more options

and could ultimately create a better plan.

That campaign has been won.

RALPH was implemented with the ability

to interpret inputs and build plans

whether driven by specific or generic

requirements, but the user projects,

realizing the positive impact of generic

requirements use them for all tracking

except that supporting project-critical
events such as encounters and maneuvers.

The goal, then, was to create a

requirements translator/planner/optimizer

to provide the conflict resolution process

a solid starting point. This is not to

minimize the quality of RALPH plans for,

starting with the highest priority

requirements, the planner derives from

22

s._
_J

m

s._

0
I.I.

i

I

m

n-

!
¢

L_

r-
e-
C_

m

Q.

\

1_

s_.
0

iim

"0
LU

Q.

0

Imam

<_
-r,
o.
_1

n-

C_

s._

01
aiD

LI.

23

the multitude of possibilities the 'best'

option. And, though the planner can be

forced to produce a conflict-free product,

as we have previously discussed, we
believe that the committee of project

representatives should resolve the most
difficult conflicts though consensus
decisions.

HOW FAR SHOULD AUTOMATION

GO?

When the RALPH tool kit was

originally conceived, one of the ultimate

goals was to determine the appropriate
mix of decision making by software and by

humans. However, resource allocation is

a very complex function the result of

which ultimately determines or, at least

strongly influences, the volume and mix of

science and engineering data to be

returned from each spacecraft. The

science investigation teams for each

project could make a valid case for

increasing the amount of coverage granted

their spacecraft or ground-based activity.
For these reasons, and for those we have

discussed elsewhere, the final steps in

making tracking decisions is, and will
continue to be, made by a team of project

representatives working with Resource

Analysis Team planners.

Human nature, then, is an

undeniable obstacle standing in the way of

a totally automated planner. With the

adoption of generic requirements and with

RALPH's event priority logic delivered,
there is no technical reason that a set of

rules could not be assembled that would

allow the software to create a conflict-free

schedule.

If total automation were a goal, a

second impediment, one that would have

to be overcome by careful design, would

be the need for a comprehensive rule set

defining the relationship and priorities

between every combination of supported

projects and a second set defining every

potential contingency that might alter the

requirements of each project. In planning,

decision making must take into account

the present situation, but must often also
consider inter-project trade-offs used

recently in granting (or withholding)

support.

A planner may, for example, deny

Voyager 1 several hours of tracking time

during a specific week in favor of ICE,
but often does so with at least the

informal understanding that that time will

be 'repaid' when the total tracking

situation allows it. Any such trade-off,

including the intention to do a payback, is

always driven by the ultimate goal of

maximizing science return for all

supported projects. Any fully automated

system would have to be capable of

similar decision making to be acceptable.

START-UP LAG

Valid statistics demonstrating the
cost-effectiveness of the RALPH

development effort have been compiled
and advertised. At the same time, we

have recently been overwhelmed by more

than normal negotiating time, one of the

specific problems that RALPH was built
to minimize. We have been able to

demonstrate that both the process and the

tool are valid and are functioning as

designed. We are, however, victims of

uncontrollable past circumstances.

Had the capability to do long-range

planning existed in the early 1980s, JPL
and NASA would have had a tool to

permit optimized re-scheduling of

payloads when shuttle flights resumed

following the post-Challenger hiatus.

Long-term planning completed before the

Challenger accident had scheduled most

upcoming launches, encounters and other

24

tracking-intensive events to minimize
serious conflicts.

With the resumption of STS-based

planetary launches, however, the schedule

for the late 1980s and early 1990s has

become anything but optimal. Magellan

(MGN) and Galileo (GLL) were launched

sex months apart with mission designs

vastly different than those originally

planned. As a result, both are headed for

Venus and periodically have very similar

view periods (that is, occupy the same

part of the sky from an Earth

perspective). Sharing significant parts of

the same sector of the sky are two of the

Pioneer spacecraft. As GLL approaches
Venus for a fly-by and concurrent

trajectory correction, planners are faced

with providing Galileo nearly continual

coverage while providing at least survival
coverage for MGN and the Pioneers.

This is just the situation planning is

designed to avoid.

Software projects implemented to

correct or improve an on-going situation

should provide some strategy to go back
and correct the short-comings of the past.

The danger is that sponsor confidence can

be badly damaged unless the development

organization is able to foresee start-up
deficiencies and make them known to

management.

The RALPH Design Team had

anticipated this 'lag' to some extent and,

consequently had taken steps to prepare

management. Two additional problems

prevented a totally adequate reaction to
the coming situation. First, when launches

resumed, there was not sufficient lead

time to allow flight projects and mission

planners to react properly. In addition,
these events occurred at a time when

Resource Allocation Plans were new to

project management and the plan's

credibility had to be established before

any reaction could be mounted.

When plans with enormous levels

of antenna contention began to appear,

the negotiating process reacted by slowing
down from the excessive work load. It

appeared at first that neither the software
nor the resource allocation process were

working when, in reality, the quality of

both was absolutely valid under the

circumstances. What was required was a

doubling and re-doubling of negotiating

time until the most difficult periods had
been freed of conflicts.

COST EFFECTIVENESS

While Resource Analysis Team
benefits of the RALPH tool kit and

planning products produced through its

use are easily measured, a significant

portion of its positive impact per dollar
invested cannot be estimated with any

degree of accuracy. The latter is largely

because RALPH provides long-range

planning capabilities not available in the

past from any source. The semi-annual

mid and long-range plans as well as

special studies, done largely by special

request and with quick turn-around, have

become working tools for near term

decision making and long-range planning

by JPL management and NASA

Headquarters.

A significant side benefit of

RALPH is its support of RAT team

activities including data entry, plan

generation, and conflict resolution meeting

support. The 1988 estimated savings was

well over 7000 person-hours a year. A

significant part of this is the fact that

preparation of weekly plans historically

required 25 hours of an experienced

planner's time. Now, a RALPH planner

with far less experience can produce a

plan in five hours, most of which is

consumed by data entry.

25

The editors and plotting routines

make possible the production of

diagnostic tools never before available.

The majority of the 7000 hours, though, is
reflected in the fact that the mature state

of RALPH allocation plans has reduced

the number of negotiating sessions to only

one weekly from the former three or four.
This reduction is worth well over 6000

hours yearly. The RALPH four year
development costs have been about $3
million.

HYBRID ARCHITECTURE

As a design incorporating heavy

reliance on data tree structures emerged,

the designers realized that any attempt to

continue to rely wholly on the original

expert system concept was invalid.
Rather, conventional algorithmic
structures could be used for much of the

planning as well the supporting editors,

input/output and interpretive modules.

The RALPH design continues to

rely on rule-based decision making for

such tasks as creating best fit schedules

and, at a more detailed level, making

support decisions based on sets of
contention variables. Each of the TMBR

modules, then, has been designed either

as a rule-based routine or as a traditional

algorithm.

PAINFUL TRANSITIONS

To have the opportunity to even

begin an innovative task requires equal

doses of optimism and masochism,

innovation and conservatism. In a large

organization, it also requires management

with the foresight to charge an enemy
hidden in the mists of uncertainty.

Innovation can make you seem a genius
or a fool. Innovation is an arena for

those who understand that not every

attempt is a win, but who believe that the

goal is worthy and the aspirants are equal
to the test.

RALPH development has been

treated somewhat differently than many

software prototypes. Whereas the

prototyping environment is most often
laboratory-like, isolated from the

atmosphere of real world production,
RALPH has been an 'on-line prototype'

from its first delivery in 1986. We have

found this to be an optimal state offering
the users the latest available technology

while at the same time allowing quick

turn-around when delivering new features

or bug fixes.

Daily use of advanced prototypes
also offers the developer a realistic

perspective of the true usefulness of his

creation. Isolated prototyping, if not

carefully designed, can mask the behavior

of subject software under the hands of

perhaps less sophisticated users who can

usually be counted on to do the

unexpected in the course of meeting daily

production goals.

Throughout the prototyping period,
the status of the software, and of its

relationship to the process it supported,

was under constant peer review. That

feedback continues today through both
formal and informal feedback from the

user community and the RALPH review
board.

During four years of on-line

prototyping, current configurations on
development and production machines

had been managed by knowledgeable

members of the design team. The

sponsoring organization, JPL's Flight

Project Support Office (FPSO),
determined that RALPH had achieved a

state of maturity that demanded the end

of informal deliveries and consequent

26

introduction of formal configuration

management (CM).

Though neither users nor

developers foresaw this as a problem, we
learned over the next two or three months

that two distinct philosophies existed. The

design team assumed an indeterminate

transition period controlled largely by the

relative ease of the version 4.0 delivery.

This delivery followed a major rewrite

during the transition from RALPH's early

format to the previously described

TMBR/C version, a non-trivial

metamorphosis. Configuration

Management had assumed a transition day
to occur before delivery to test. The

acceptance test period was extensive and

required several re-deliveries. Ultimately,
it was evident to all that a transitional

period had occurred naturally and that

formal, third party CM was applicable

only after true stability of the final

prototype version had been achieved.

WHERE WILL IT END?

References have been made to the

mid-course corrections that have been

necessary to refine the design team's

targeting. The result is that, to date, a

tool set with enormous positive impact

has been created for the users. Through

use of the growing set of tools, both the

Resources Analysis Team and the projects

they support have conceived an extensive
list of additional capabilities that would

expand the team's abilities even further.

Not the least of these is the

suggestion that, in the coming era of

growing international cooperation and

sharing of resources, 2 the JPL resource

allocation process and the RALPH tool

kit would be an ideal means to provide

optimized planning and scheduling for the

world space science community. The
Phobos and CNES studies mentioned

earlier, as well as support for such

multinational efforts as Ulysses, Giotto

and Galileo, have provided valuable

experience in international cooperation.

CONCLUSION

The RALPH experience has

emphasized a number of lessons which,

while not unique to this effort, will have
been of benefit as we embark on future

projects. Tantamount to a secure

development environment is a sponsor

who understands the risks and potential

benefits and is willing to support

development through both good and bad

times. During development, success of a

unique system is highly dependent on a

close and lasting relationship between

developers and users. Such a

circumstance is a virtual guarantee that

delivery will be free of misgivings and

disappointment.

An expert system is traditionally

design to replace an expert. The goal of

RALPH implementation has been to
relieve the 'front end' burden of tedious

scheduling from the expert planner and to

move him to the 'back end' of the system

where his expertise can be concentrated

on analysis and on providing
recommendations prior to negotiations.

In the creation of a precedent-

setting system, it is vital for the developers
to take unusual strides to be assured that

they understand the full implications of

the user's requirements. The system

initially conceived and requested by users

may not be the solution to his problems,

for, as we have experienced, the

methodology may change in response to

the power of the tool. Proceed with

caution, be flexible and schedule

deliveries that assume change. Regardless

of the care given to the original design

decisions, significant changes are likely

27

when the methods chosen break new

ground. And, finally, plan a lengthy
transition from prototyping to a more
formal, controlled environment.

lo

,

REFERENCES

Berner, C. A., R. Durham and N. B. Reilly, "Ground Data

System Resource Allocation Process", 1989 Goddard Conference

on Space Applications of Artificial Intelligence, May, 1989

Dumas, L. N., G. A. Briggs, M. S. Reid, and J. G. Smith,

"Opportunities for International Collaboration in Deep Space

Communications and Tracking", Proceedings of the Second

Annual AIAA/JPL International Conference on Solar System

Exploration, Pasadena, August 1989

28

